
1

Oversubscription on Multicore Processors
Costin Iancu, Steven Hofmeyr, Filip Blagojević, Yili Zheng

Lawrence Berkeley National Laboratory
Berkeley, USA

{cciancu,shofmeyr,fblagojevic,yzheng}@lbl.gov

Abstract—Existing multicore systems already provide deep
levels of thread parallelism; hybrid programming models and
composability of parallel libraries are very active areas of
research within the scientific programming community. As more
applications and libraries become parallel, scenarios where mul-
tiple threads compete for a core are unavoidable. In this paper we
evaluate the impact of task oversubscription on the performance
of MPI, OpenMP and UPC implementations of the NAS Parallel
Benchmarks on UMA and NUMA multi-socket architectures.
We evaluate explicit thread affinity management against the
default Linux load balancing and discuss sharing and partitioning
system management techniques. Our results indicate that over-
subscription provides beneficial effects for applications running
in competitive environments. Sharing all the available cores
between applications provides better throughput than explicit
partitioning. Modest levels of oversubscription improve system
throughput by 27% and provide better performance isolation
of applications from their co-runners: best overall throughput
is always observed when applications share cores and each is
executed with multiple threads per core. Rather than “resource”
symbiosis, our results indicate that the determining behavioral
factor when applications share a system is the granularity of the
synchronization operations.

I. INTRODUCTION

The pervasiveness of multicore processors in contemporary
computing systems will increase the demand for techniques to
adapt application level parallelism to the available hardware
parallelism. Modern systems are increasingly asymmetric in
terms of both architecture (e.g. Intel Larrabee or GPUs)
and performance (e.g. Intel Nehalem Turbo Boost). Parallel
applications often have restrictions on the degree of parallelism
and threads might not be evenly distributed across cores, e.g.
square number of threads. Furthermore, applications using
hybrid programming models and concurrent execution of
parallel libraries are likely to become more prevalent. Recent
results illustrate the benefits of hybrid MPI+OpenMP [1], [2]
or MPI+UPC [3] programming for scientific applications in
multicore environments. In this setting MPI processes share
cores with other threads. Calls to parallel scientific libraries
are also likely to occur [4] in consumer applications that are
executed in competitive environments on devices where tasks
are forced to share cores. As more and more applications
and libraries become parallel, they will have to execute in
asymmetric (either hardware or load imbalanced) competitive
environments and one question is how well existing program-
ming models and OS support behave in these situations. Ex-
isting runtimes for parallel scientific computing are designed
based on the implicit assumption that applications run with one

Operating System level task per core in a dedicated execution
environment and this setting will provide best performance.

In this paper we evaluate the impact of oversubscription on
end-to-end application performance, i.e. running an application
with a number of OS level tasks larger than the number
of available cores. We explore single and multi-application
usage scenarios with system partitioning or sharing for several
implementations of the NAS Parallel Benchmarks [5] (UPC,
MPI+Fortran and OpenMP+Fortran) on multi-socket NUMA
(AMD Barcelona and Intel Nehalem) and UMA (Intel Tiger-
ton) multicore systems running Linux. To our knowledge, this
is the first evaluation of oversubscription, sharing and parti-
tioning on non-simulated hardware at the core concurrency
levels available today. Our results indicate that while task
oversubscription sometimes affects performance in dedicated
environments, it is beneficial for the performance of parallel
workloads in competitive environments, irrespective of the
programming model. Modest oversubscription (2,4,8 tasks per
core) improves system throughput by 27% when compared
to running applications in isolation and in some cases end-
to-end performance (up to 46%). For the multi-socket sys-
tems examined, partitioning sockets between applications in
a combined workload almost halves the system throughput,
regardless of the programming paradigm. Partitioning [6]–[8]
has been increasingly advocated recently and this particular
result provides a cautionary tale when considering scientific
workloads. Oversubscription provides an easy way to reduce
the performance impact of co-runners and it is also a feasible
technique to allocate resources to parallel applications: there
is correlation between the number of threads present in the
system and the observed overall performance.

When examining an isolated application, our results indicate
that the average inter-barrier interval is a good predictor of
its behavior with oversubscription. Fine grained applications
(few ms inter-barrier intervals) are likely to see performance
degradation, while coarser grained applications speed-up or
are not affected. The observed behavior is architecture or pro-
gramming model independent. When examining co-scheduling
of applications, again the synchronization granularity is an
accurate predictor of their behavior. The results presented
in this study suggest that symbiotic scheduling of parallel
scientific applications on multicore systems depends on the
synchronization behavior, rather than on cache or CPU usage.

One of the more surprising results of this study is that,
irrespective of the programming model, best overall system
throughput is obtained when each application is allowed to run
with multiple threads per core in a non-dedicated environment.



The throughput improvements provided by oversubscription in
a “symbiosis” agnostic manner match or exceed the improve-
ments reported by existing studies of co-scheduling on multi-
core or shared memory systems. As discussed in Section VIII,
our evaluation of OpenMP oversubscription exhibits different
trends than previously reported.

Our results are obtained only when enforcing an even thread
distribution across cores at program startup; oversubscription
degrades performance in all cases where the default Linux load
balancing is used. For the applications considered, an even
initial task distribution seems to be the only requirement for
good performance, rather than careful thread to core mappings.
The performance results for experiments where threads are
randomly pinned to cores are statistically indistinguishable.

II. OVERSUBSCRIPTION AND PERFORMANCE

When threads share cores several factors impact the end-to-
end application performance: 1) context switching; 2) load bal-
ancing; 3) inter-thread synchronization overhead and 4) system
partitioning. The impact of context switching is determined by
the direct OS overhead of scheduling and performing the task
switching and by the indirect overhead of lost hardware state
(locality): caches and TLBs. Li et al [9] present microbench-
mark results to quantify the impact of task migration on
modern multicore processors. Their results indicate overheads
with granularities ranging from few microseconds for CPU
intensive tasks to few milliseconds for memory intensive tasks;
for reference, the scheduling time quanta is around 100ms.
Our application results also indicate that context switching and
loss of hardware state do not significantly impact performance
for the observed applications: therefore in the rest of this paper
we do not quantify these metrics.

Load balancing determines the “spatial” distribution of tasks
on available cores and sometimes tries to address locality
concerns. Recent studies advocate explicit thread affinity
management [10] using the sched_setaffinity system
call and better system load balancing [11], [12] mechanisms.
Explicitly managing thread affinity can lead to non-portable
implementations since it cannot accommodate un-even task
distributions. In [12] we present a user level load balancer able
to provide scalable performance for arbitrary task distributions:
those results also substantiate the fact that the impact of
“hardware” locality can be ignored. For conciseness reasons,
in this paper we present results for experiments performed
with even task distributions across cores and concentrate the
exposition on the impact of synchronization behavior and
system partitioning.

Parallel applications have data and control dependencies
and threads will “stall” waiting for other threads. In these
cases oversubscription has the potential to improve application
performance with better load balancing and CPU utilization.
On the other hand, increasing the number of threads has the
potential to increase the duration of synchronization operations
due to greater operational complexity and hardware con-
tention. The implementation of these operations often interacts
with the per-core task scheduler through the sched_yield
system call which influences the temporal ordering of task

execution. In order to increase CPU utilization and system
responsiveness, most implementations use a combination of
polling and task yielding rather than blocking operations.
Similar techniques are used in communication libraries when
checking for completion of outstanding operations.

System partitioning answers the question of how should
multicore systems be managed: threads either competitively
share a set of cores or can be isolated into their own runtime
partitions. Several [6]–[8], [13] research efforts advocate for
system partitioning as a way of improving both performance
and isolation.

We evaluate the performance in the presence of over-
subscription of three programming models: MPI, UPC and
OpenMP. MPI is the dominant programming paradigm for
parallel scientific applications and UPC [14] belongs to the
emerging family of Partitioned Global Address Space lan-
guages. MPI uses OS processes while UPC uses pthreads
and exhibits a lower context switch cost. Both UPC and MPI
programs perform inter-task synchronization in barrier opera-
tions while MPI programs might also synchronize in Send/Rcv
pairs. OpenMP runs with pthreads and performs barrier
synchronization when exiting parallel regions and might syn-
chronize inside parallel regions. The three runtimes considered
yield inside synchronization operations in the presence of
oversubscription. Hybrid implementations using combinations
of these programming models are already encountered in
practice [1]–[3].

III. EXPERIMENTAL SETUP

We experimented on the multicore architectures shown in
Table I. The Tigerton system is a UMA quad-socket, quad-
core Intel Xeon where each pair of cores shares an L2
cache and each socket shares a front-side bus. The Barcelona
system is a NUMA quad-socket, quad-core AMD Opteron
where cores within a socket share an L3 cache. The Nehalem
system is a dual-socket quad-core Intel Nehalem system with
hyperthreading; each core supports two hardware execution
contexts. All systems run recent Linux kernels (2.6.28 on the
Tigerton, 2.6.27 on the Barcelona and 2.6.30 on the Nehalem).

We use implementations of the NAS Parallel Benchmarks
(NPB), classes S, A, B and C: version 2.4 for UPC [15] and
3.3 for OpenMP and MPI [5]. All programs (CG, MG, IS,
FT, EP, SP) have been compiled with the Intel 10.1 compilers
(icc, ifort) which provide good serial performance on
all architectures. The UPC benchmarks are compiled with
the Berkeley UPC 2.8.0 compiler which uses -O3 for the
icc back-end compiler, while the Fortran benchmarks were
compiled with -fast, which includes -O3. Unless specified
otherwise, OpenMP is compiled and executed with static
scheduling. We have used MPICH 2 on all architectures. Due
to space restrictions we will not discuss the details of the NAS
benchmarks (for a detailed discussion kindly see [5]).

Asanović et al [4] examined six different promising domains
for commercial parallel applications and report that a surpris-
ingly large fraction of them use methods encountered in the
scientific domain. In particular, all methods used in the NAS
benchmarks appear in at least one commercial domain.



Processor Clock GHz Cores L1 data/instr L2 cache L3 cache Memory/core NUMA
Tigerton Intel Xeon E7310 1.6 16 (4x4) 32K/32K 4M / 2 cores none 2GB no
Barcelona AMD Opteron 8350 2 16 (4x4) 64K/64K 512K / core 2M / socket 4GB socket
Nehalem Intel Xeon E5530 2.4 16 (2x4x2) 32K/32K 256K / core 8M / socket 1.5G / core socket

TABLE I
Test systems.

0 

10 

20 

30 

40 

50 

60 

1/core 2/core 4/core 1/core 2/core 4/core 1/core 2/core 4/core 

UPC  OpenMP  MPI 

Tim
e (

mi
cro

sec
) 

Barrier Performance ‐ AMD Barcelona 

1 

2 

4 

8 

16 

160 

Fig. 1. Barrier performance with oversubscription at
different core counts (legend) on AMD Barcelona. Similar
results are observed on all systems.

 0.1

 1

 10

 100

 1000

 10000

A B C A B C A B C A B C A B C A B C A B C

Int
er

-b
ar

rie
r t

im
e (

ms
)

UPC NPB 2.4 Barrier Stats, 16 threads

3777

17877

17877

13

13

13

56

140

50

91

91

91

378
1114

1240

13677

13677

13677

7688

7688

7688

btspmgisftepcg

Fig. 2. Average time between two barriers and barrier
count for the UPC benchmarks on Nehalem. Similar
trends are observed on all systems and implementations.

The execution time across all benchmarks ranges from a few
seconds to hundreds of seconds while the memory footprints
range from few MB to GB. For example, the data domain
in FT class C is a grid of size 512x512x512 of complex data
points: this amounts to more than 2GB of data. Thus, we have
a reasonable sample of short and long lived applications and
a sample of small and large memory footprints. For all bench-
marks, we compare executions using the default Linux load
balancing with explicit thread affinity management, referred to
as PIN. For PIN we generate random initial pinnings to capture
different initial conditions and thread interactions and pin tasks
to cores using the sched_setaffinity system call at
the beginning of program execution. To capture variation in
execution times each experiment has been repeated five or
more times; most experiments have at least 15 settings for the
initial task layout. As a performance metric we use the average
benchmark running time across all repetitions.

IV. BENCHMARK CHARACTERISTICS

Figure 1 presents the behavior of barrier implementations
for the three programming models in the presence of oversub-
scription: increasing the number of threads per core increases
the barrier latency from few µs to tens of µs. The MPI over-
subscribed barrier latency is greater than UPC and OpenMP
due to the more expensive process context switch. Note that
these microbenchmark results provide a lower bound for the
barrier latency when used in application settings. UPC and
MPI call sched_yield inside barriers when oversubscribed.
The Intel OpenMP runtime provides a tunable implementation
controlled by the KMP BLOCKTIME environment variable.
Unless specified otherwise, all results use the default behavior
of polling for 200 ms before threads sleep. The other rele-
vant settings are KMP BLOCKTIME=0 where threads sleep
immediately and is designed for sharing the system with other
applications and KMP BLOCKTIME=infinite where threads
never sleep and is designed for dedicated system use. The
barrier results with the default setting are representative for
the other two settings.

Figure 2 presents the synchronization behavior of the UPC
implementations on Nehalem : the height of the bars indicates
the average time between two barriers in ms, while the labels
show the number of executed barriers. The OpenMP and MPI
results are very similar and are omitted for brevity. Profiling
data shows that most benchmarks exhibit a multi-modal inter-
barrier interval distribution, however, as our results indicate,
the average interval is a robust predictor for the behavior
with oversubscription. We also omit the data about application
memory footprints (see [5] for more details).

All implementations exhibit a good load balance: the UPC
and MPI implementations have been developed for clusters
and have an even domain decomposition, the OpenMP imple-
mentations distribute loops evenly across threads.

V. SCALABILITY AND OVERSUBSCRIPTION

In this section we discuss the effects of oversubscription (up
to eight tasks per core) on end-to-end benchmark performance
in a dedicated environment: each benchmark is run by itself.
All benchmarks in the workload (class A,B,C) scale up to
16 cores on all systems. Figures 3, 4, 7 and 8 present
selected results for all workloads. For each benchmark we
present performance normalized to the performance of the
experiment with one thread per core: values greater than one
indicate performance improvements. The total height of the
bars indicates the behavior when tasks are evenly distributed
and explicitly pinned to cores at program startup.

The UPC workload is not affected by oversubscription.
The average performance of the whole workload decreases or
increases by −2% and 2% respectively, depending on the num-
ber of threads per core. We observe several types of behavior
when considering individual benchmarks. EP, which is com-
putationally intensive and very coarse grained, is oblivious to
oversubscription. This also indicates that the OS overhead for
managing the increased thread parallelism is not prohibitive.
Oversubscription improves performance for FT and IS with a
maximum improvement of 46%. The performance improve-
ments increase with the degree of oversubscription. As the
problem size increases, the synchronization granularity of SP



UPC Tigerton

 0

 0.5

 1

 1.5

 2

248 248 248

Pe
rfo

rm
an

ce
 re

lat
ive

 to
 1

/co
re

ep
CBA

24 248 248

ft
CBA

248 248 248

is
CBA

4 4 4

sp
CBA

248 248 248

mg
CBA

24 248 248

cg

CFS
PSX yield

PIN

CBA

Fig. 3. UMA oversubscription UPC. Performance is normalized
to that of experiments with 1 task per core. Number of tasks per
core can be 2, 4 or 8. SP requires a square number of threads.
Overall workload performance varies from -2% to 2%.

UPC Barcelona

 0

 0.5

 1

 1.5

 2

248 248 248

Pe
rfo

rm
an

ce
 re

lat
ive

 to
 1

/co
re

ep
CBA

24 248 248

ft
CBA

248 248 248

is
CBA

4 4 4

sp
CBA

248 248 248

mg
CBA

24 248 248

cg

CFS
PSX yield

PIN

CBA

Fig. 4. NUMA oversubscription UPC. Performance is normal-
ized to that of experiments with 1 task per core. Number of
tasks per core can be 2, 4 or 8. SP requires a square number
of threads. Overall workload performance varies from -2% to
2%.

Balance UPC Tigerton

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

248 248 248

Im
pr

ov
em

en
t o

ve
r 1

/co
re

ep
CBA

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

24 248 248

ft
CBA

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

248 248 248

is
CBA

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

4 4 4

sp
CBA

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

248 248 248

mg
CBA

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

24 248 248

cg
CBA

Fig. 5. Changes in balance on UMA, reported as the ratio
between the lowest and highest user time across all cores
compared to the 1/core setting.

Cache miss rate UPC Tigerton

-0.4

-0.2

 0

 0.2

 0.4

248 248 248

Im
pr

ov
em

en
t o

ve
r 1

/co
re

ep
CBA

-0.4

-0.2

 0

 0.2

 0.4

24 248 248

ft
CBA

-0.4

-0.2

 0

 0.2

 0.4

248 248 248

is
CBA

-0.4

-0.2

 0

 0.2

 0.4

4 4 4

sp
CBA

-0.4

-0.2

 0

 0.2

 0.4

248 248 248

mg
CBA

-0.4

-0.2

 0

 0.2

 0.4

24 248 248

cg
CBA

Fig. 6. Changes in the total number of cache misses per 1000
instructions, across all cores compared to 1/core. The EP miss
rate is very low.

MPI Tigerton

 0

 0.5

 1

 1.5

 2

24 24 24

Pe
rfo

rm
an

ce
 re

lat
ive

 to
 1

/co
re

ep
CBA

2 4 2 4 2 4

ft
CBA

2 4 2 4 2 4

is
CBA

4 4 4

sp
CBA

2 4 2 4 2 4

mg
CBA

2 4 2 4 2 4

cg

CFS
PSX yield

PIN

CBA

Fig. 7. UMA oversubscription MPI. Performance is normalized
to that of experiments with 1 task per core. Number of tasks per
core can be 2 or 4. Overall workload performance decreases
by 10% to 18%.

OMP Nehalem

 0

 0.5

 1

 1.5

 2

248 248 248 248

Pe
rfo

rm
an

ce
 re

lat
ive

 to
 1

/co
re

ep
SCBA

248 248 248 248

ft
SCBA

248 248 248 248

is
SCBA

248 248 248 248

sp
SCBA

248 248 248 248

mg
SCBA

248 248 248 248

cg

CFS
PSX yield

PIN

SCBA

Fig. 8. NUMA oversubscription OpenMP. Performance is
normalized to that of experiments with 1 task per core. Number
of tasks per core can be 2, 4 or 8. Workload performance
decreases by 6% to 14%.

0.8	
  

0.9	
  

1	
  

1.1	
  

1.2	
  

0	
   2	
   4	
   6	
   8	
   10	
   12	
   14	
   16	
  

Re
la.

ve
	
  Pe

rfo
rm

an
ce
	
  

OMP	
  Barcelona,	
  KMP_BLOCKTIME=0	
  
DEF1/KMP1	
   DEF2/KMP2	
   DEF4/KMP4	
  

Fig. 9. OpenMP performance with cooperative syn-
chronization on Barcelona. DEF1/KMP1 stands for the
default/kmp=0 value with one thread per core. Values
greater than 1 indicate performance improvement.

0.8	
  

0.9	
  

1	
  

1.1	
  

1.2	
  

0	
   2	
   4	
   6	
   8	
   10	
   12	
   14	
   16	
  

Re
la.

ve
	
  Pe

rfo
rm

an
ce
	
  

OMP	
  Barcelona,	
  KMP_BLOCKTIME=inf	
  
DEF1/INF1	
   DEF2/INF2	
   DEF4/INF4	
  

Fig. 10. OpenMP performance with “non-cooperative”
synchronization on Barcelona. DEF1/INF1 stands for the
default/kmp=inf value with one thread per core. Values
greater than 1 indicate performance improvement.



and MG also increases and oversubscription is able to provide
better performance; increasing the degree of oversubscription
enhances the respective trend. CG performance proportionally
decreases with the degree of oversubscription, with a max-
imum slowdown of 44%. Note that all benchmarks where
performance degrades with oversubscription are characterized
by a short inter-barrier interval (e.g. 1-5 ms on Nehalem) and
a large number of barrier operations.

The MPI workload is affected more by oversubscription
and overall workload performance decreases by 10% when
applications are run with two threads per core. Again, most
benchmarks are oblivious to oversubscription and performance
degradation is observed only for the very fine grained bench-
marks. The UPC and MPI implementations use similar domain
decomposition for each benchmark and some of the differences
from the UPC workload could be attributed to both higher
task context switch cost (MPI uses processes, while UPC
uses pthreads) and to the higher overhead of the MPI
barriers with oversubscription. We isolate the impact of context
switching by running the UPC workload with processes and
shared memory inter-process communication mechanisms: this
behavior remains almost identical when running with pro-
cesses, therefore we attribute any different trends in the MPI
behavior to the barrier performance.

The OpenMP behavior on Nehalem is presented in Fig-
ure 8, similar behavior is observed on the other architectures.
Oversubscription slightly decreases overall (classes A,B,C)
throughput, again due to the decrease in performance for
the fine grained benchmarks. For reference, we also present
the behavior of class S. For this problem size the base
implementations scale poorly with the increase in cores even
when executing with one thread per core. The results pre-
sented are with the default setting of KMP BLOCKTIME
and OMP STATIC. The OpenMP runtime concurrency and
scheduling can be changed using the environment variables
OMP DYNAMIC and OMP GUIDED. We have experimented with
these settings, but best performance for this implementation
of the NAS benchmarks is obtained OMP STATIC. Liao et
al [16] also report better performance when running OpenMP
with a static number of threads, evenly distributed. En-
abling dynamic adjustment of the number of threads does not
affect the overall trends when oversubscribing.

The synchronization behavior of OpenMP can be ad-
justed using the variable KMP BLOCKTIME. A setting of
KMP BLOCKTIME=0 forces threads to sleep immediately
inside synchronization operations for a more cooperative be-
havior. This setting determines a slight decrease in perfor-
mance when running with one thread per core, but it improves
performance when oversubscribing. Figure 9 presents the
performance compared to the default setting. As illustrated, the
performance of the coarse grained benchmarks is not affected,
while for the fine grained benchmarks we observe improve-
ments as high as 10%. Figure 10 presents the performance
with the setting KMP BLOCKTIME=infinite, where threads
are less cooperative and never sleep. This setting provides best
overall performance for the OpenMP implementations.

All of our results and analysis indicate that the best
predictor of application behavior when oversubscribing is

the average inter-barrier interval. Applications with barriers
executed every few ms are affected, while coarser grained
applications are oblivious or their performance improves.

In order to gain more insight about application behavior in
the presence of oversubscription we have also collected data
from hardware performance counters (cache miss, total cycles,
TLB) and detailed scheduling information from the system
logs (user, system time, number of thread migrations, virtual
memory behavior). Some of these metrics directly capture the
benefits of oversubscription and we illustrate the observed
UPC behavior on Tigerton. Figure 5 presents the ratio between
the lowest and the highest amount of observed user time across
all cores normalized to the ratio for the execution with one
thread per core. This measure captures the variation of core
utilization with oversubscription. Oversubscription improves
CPU utilization for FT (all classes), IS-A and CG (A and
C). Figure 6 presents the relative behavior of the L2 cache,
which is shared on Tigerton. We report the normalized total
number of cache misses per 1000 instructions across all cores.
The results are normalized to the execution with one thread
per core. Oversubscription improves memory behavior for the
behavior of IS-C and MG (A and B). The behavior of the
remaining benchmarks could be explained by a combination
of these two metrics.

The UPC performance trends capture another potential
benefit of oversubscription: it decreases resource contention
and serialization of operations. The benchmarks where perfor-
mance improves (FT, IS, SP) are characterized by resource
contention. They all contain a hand coded communication
phase where each thread transfers large amounts of data from
the memory space of all (FT,IS) or many (SP) other threads.
This portion of the code is written in such a manner that all
transfers start from the same thread and proceed in sequence
(0, 1, 2...). Oversubscription decreases the granularity of these
contending transfers and allows for less serialization. In all
three benchmarks, most of the performance improvements
occur in these particular parts of the code: this also accounts
for the better CPU utilization. Note that this behavior also
explains the better improvements of UPC on Tigerton when
compared to Barcelona: Tigerton has a much lower memory
bandwidth and the front-side bus is a source of contention.
The MPI benchmarks use the same domain decomposition as
the UPC implementations, but call into tuned implementations
of collective and scatter-gather communication. This explains
the lower benefits of oversubscription for the MPI implemen-
tations.

A. Interaction With Per-Core Scheduling

Figures 3,4,7, and 8 also illustrate the impact of scheduling
decisions inside the operating system. The new Linux distri-
butions allow two different behaviors for the sched_yield
system call. The default behavior (referred to as CFS) does not
suspend the calling thread if its quantum has not expired, while
the Posix conforming implementation un-schedules the caller.
The former is designed to improve interactive behavior in
desktop and server workloads, while the latter is the behavior
assumed by the implementations of synchronization operations



in runtimes for scientific programming. In the figures, the bars
labeled PSX show the additional performance improvements
when replacing1 the default Linux sched_yield implemen-
tation with the Posix conforming implementation. The results
show that Posix yield performs better than CFS yield and
usually the performance differences increase with the degree
of oversubscription. The impact on a benchmark is relatively
independent on the problem class and it is an indication of the
frequency of the synchronization performed by the benchmark.

The UPC workload is less affected by the sched_yield
implementation than the OpenMP workload. This behavior
is explained by the finer granularity of parallelism in the
OpenMP implementations. The performance of OpenMP runs
with eight threads per core is completely dominated by the
impact of more cooperative yielding. The impact on the MPI
workload is small.

For all implementations, runs where threads are explicitly
managed are improved less than runs subject to the default
Linux load balancing. The detailed comparison of CFS-Load
with CFS-PIN is omitted for brevity. For example, the average
improvements in the UPC workload performance are 6% for
pinned, 9% for load balancing, with ranges [-7% , 35%] and
[-10% , 40%] respectively. As explained in the next section,
this behavior is caused by the inability of the Linux load
balancing to migrate threads after startup and initial memory
allocation. Based on these observations all other experimental
results presented are with Posix yield.

B. Thread Affinity Management

Figures 3,4,7, and 8 also present the impact of thread affinity
management on application performance. The bars labeled PIN
show the average performance improvements when threads are
evenly distributed across the available cores when compared
to the default Linux load balancing. As expected, the impact
of affinity management is higher for the NUMA architectures,
as illustrated for UPC by Figures 3 and 4. UPC and OpenMP
are sensitive to thread affinity management regardless of the
degree of oversubscription. For example, on Barcelona UPC
runtime performance improves by as much as 57%, while
OpenMP performance improves by 31%. MPI performance
is less affected by affinity management in the presence of
oversubscription. Explicit thread affinity management also
increases performance reproducibility: runs with the default
Linux load balancing exhibit a variation as high as 120%,
while runs with pinned threads vary by at most 10%.

The performance differences are explained by a combi-
nation of load balancing behavior, NUMA memory affinity
and runtime implementation. With the default load balancing,
threads are started on few cores and later migrated. With first-
touch memory affinity management, pages are bound to a
memory controller before threads have a chance to migrate to
an available core. OpenMP performs an implicit barrier after
spawning threads; threads might sleep inside the barrier which
determines the Linux load balancing to migrate threads. UPC,
which is the most sensitive to affinity management, allocates

1Behavior is controlled by writing 1 in
/proc/sys/kernel/sched compat yield.

the shared heap at program startup and each thread touches
its memory pages. However, this first touch happens before
threads have a chance to migrate to an idle core.

For the benchmark implementations examined in this paper,
the performance impact of thread affinity management is an
artifact of the characteristics of Linux thread startup and load
balancing, rather than of the application itself. Ensuring that
threads are directly started on the idle cores eliminates most of
the effects of explicit affinity management. Our experiments
with random thread to core mappings show indistinguish-
able performance between different pinnings. The differences
between the average workload performance with any two
pinnings are within few percent (well within the variation
for a given pinning), with a maximum for a particular (SP)
benchmark of 12%.

In [12] we present a user level load balancer that enforces
an even initial thread distribution and constrains threads to
a NUMA domain, rather than a particular core. Results for
the same workload presented here indicate that threads can
freely migrate inside a NUMA domain without experiencing
performance degradation. Also note that new implementations
of job spawners on large scale systems enforce an even thread
distribution at program startup. We therefore expect explicit
thread affinity management to play a smaller role in code
optimization of scientific applications.

VI. COMPETITIVE ENVIRONMENTS

We explore two alternatives for system management in com-
petitive environments: 1) sharing (best effort) and 2) partition-
ing (managed). For the sharing experiments, each application
is allowed to run on all the cores, while for the partitioned
experiments each application is given an equal number of
distinct cores. We consider only fully isolated partitions, i.e.
applications do not share sockets. The application combina-
tions we present (EP, CG, FT and MG) have been chosen to
contain co-runners with relatively equal durations2and differ-
ent behavior. For lack of space we do not present a full set
of experiments and concentrate mostly on UPC and OpenMP
behavior. EP is a CPU intensive application while CG, MG and
FT are memory intensive. FT performance improves (UPC)
or it is not affected by oversubscription (OpenMP), while
MG performance slightly degrades with oversubscription. EP
performance is not affected by oversubscription, while CG
performs fine grained synchronization and its performance
degrades. We do not present data for IS, which runs for at
most 2s and for SP which requires a square number of threads
in the UPC implementation.

Figure 11 presents the comparative performance of com-
bined workloads when sharing or partitioning the system.
We plot the speedup of each application in a pair (x-axis)
when sharing the system compared to the its performance with
partitioning. In the partitioning experiment, each application
is run on eight cores, with one thread per core. In the
sharing experiments, each application receives 16 cores and
the number of threads per core indicated on the x-axis. The

2On Barcelona: ep-C=21.11s, cg-B=24.426s, ft-B=9.5s and mg-C=27.64s
for OpenMP.



OMP Barcelona

-20

 0

 20

 40

 60

 80

 100

 120

124 124 124 124Im
pr

ov
em

en
t o

ve
r p

ar
titi

on
ing

 (%
)

cg-B
mgftepcg

-20

 0

 20

 40

 60

 80

 100

 120

124 124 124 124

ep-C
mgftepcg

-20

 0

 20

 40

 60

 80

 100

 120

124 124 124 124

ft-B
mgftepcg

-20

 0

 20

 40

 60

 80

 100

 120

124 124 124 124

mg-C
mgftepcg

Fig. 11. Performance for OMP benchmarks when sharing
the system compared to partitioning.

OMP Barcelona

 30

 40

 50

 60

 70

 80

 90

 100

124 124 124 124

Ti
m

e 
de

dic
at

ed
/sh

ar
ed

 (%
)

cg-B
mgftepcg

 30

 40

 50

 60

 70

 80

 90

 100

124 124 124 124

ep-C
mgftepcg

 30

 40

 50

 60

 70

 80

 90

 100

124 124 124 124

ft-B
mgftepcg

 30

 40

 50

 60

 70

 80

 90

 100

124 124 124 124

mg-C
mgftepcg

Fig. 12. Percentage of performance sharing compared
with dedicated one per core. The benchmarks are sharing
the whole system.

OMP Nehalem

-60

-40

-20

 0

 20

 40

 60

 80

 100

 120

1 2 1 2 1 2 1 2Im
pr

ov
em

en
t o

ve
r p

ar
titi

on
ing

 (%
)

cg-B
mgftepcg

-60

-40

-20

 0

 20

 40

 60

 80

 100

 120

1 2 1 2 1 2 1 2

ep-C
mgftepcg

-60

-40

-20

 0

 20

 40

 60

 80

 100

 120

1 2 1 2 1 2 1 2

ft-B
mgftepcg

-60

-40

-20

 0

 20

 40

 60

 80

 100

 120

1 2 1 2 1 2 1 2

mg-C
mgftepcg

Fig. 13. Performance for OMP benchmarks when sharing
the system compared to partitioning.

OMP Nehalem

 30

 40

 50

 60

 70

 80

 90

 100

1 2 1 2 1 2 1 2

Ti
m

e 
de

dic
at

ed
/sh

ar
ed

 (%
)

cg-B
mgftepcg

 30

 40

 50

 60

 70

 80

 90

 100

1 2 1 2 1 2 1 2

ep-C
mgftepcg

 30

 40

 50

 60

 70

 80

 90

 100

1 2 1 2 1 2 1 2

ft-B
mgftepcg

 30

 40

 50

 60

 70

 80

 90

 100

1 2 1 2 1 2 1 2

mg-C
mgftepcg

Fig. 14. Percentage of performance sharing compared
with dedicated one per core. The benchmarks are sharing
the whole system.

-60

-40

-20

 0

 20

 40

 60

 80

 100

cg-B+cg-B

cg-B+ep-C

cg-B+ft-B

cg-B+m
g-C

ep-C+ep-C

ep-C+ft-B

ep-C+m
g-C

ft-B+ft-B

ft-B+m
g-C

m
g-C+m

g-C

Im
pr

ov
em

en
t o

ve
r d

ed
ic

at
ed

 (%
)

OMP+MPI Tigerton Throughput

1/
2/
4/

Fig. 15. Throughput for OMP/MPI
sharing.

-60

-40

-20

 0

 20

 40

 60

 80

 100

cg-B+cg-B

cg-B+ep-C

cg-B+ft-B

cg-B+m
g-C

ep-C+ep-C

ep-C+ft-B

ep-C+m
g-C

ft-B+ft-B

ft-B+m
g-C

m
g-C+m

g-C

Im
pr

ov
em

en
t o

ve
r d

ed
ic

at
ed

 (%
)

OMP+UPC Barcelona Throughput kmp0

1/
2/
4/

Fig. 16. Throughput for OMP/UPC
sharing. KMP BLOCKTIME=0.

-100

-80

-60

-40

-20

 0

 20

 40

 60

 80

 100

cg-B+cg-B

cg-B+ep-C

cg-B+ft-B

cg-B+m
g-C

ep-C+ep-C

ep-C+ft-B

ep-C+m
g-C

ft-B+ft-B

ft-B+m
g-C

m
g-C+m

g-C

Im
pr

ov
em

en
t o

ve
r d

ed
ic

at
ed

 (%
)

OMP+UPC Barcelona Throughput infinite

1/
2/
4/

Fig. 17. Throughput for OMP/UPC
sharing. KMP BLOCKTIME=inf.

Fewer threads UPC Tigerton

-40

-20

 0

 20

 40

 60

1
2

2
4

1
2

2
4

1
2

2
4

1
2

2
4

Im
pr

ov
em

en
t o

ve
r f

air
 (%

)

cg-B
mgftepcg

-40

-20

 0

 20

 40

 60

1
2

2
4

1
2

2
4

1
2

2
4

1
2

2
4

ep-C
mgftepcg

-40

-20

 0

 20

 40

 60

1
2

2
4

1
2

2
4

1
2

2
4

1
2

2
4

ft-B
mgftepcg

-40

-20

 0

 20

 40

 60

1
2

2
4

1
2

2
4

1
2

2
4

1
2

2
4

mg-C
mgftepcg

Fig. 18. Relative differences in performance when the
application is given fewer threads. x-axis presents the
number of application and co-runner threads. (1/2 and
2/4).

More threads UPC Tigerton

-40

-20

 0

 20

 40

 60

2
1

4
2

2
1

4
2

2
1

4
2

2
1

4
2

Im
pr

ov
em

en
t o

ve
r f

air
 (%

)

cg-B
mgftepcg

-40

-20

 0

 20

 40

 60

2
1

4
2

2
1

4
2

2
1

4
2

2
1

4
2

ep-C
mgftepcg

-40

-20

 0

 20

 40

 60

2
1

4
2

2
1

4
2

2
1

4
2

2
1

4
2

ft-B
mgftepcg

-40

-20

 0

 20

 40

 60

2
1

4
2

2
1

4
2

2
1

4
2

2
1

4
2

mg-C
mgftepcg

Fig. 19. Relative differences in performance when the
application is given more threads. x-axis presents the
number of application and co-runner threads. (2/1 and
4/2).



results indicate that partitioning cores between applications
decreases performance and system throughput. For example, a
cg-B+cg-B OpenMP experiment on Barcelona observes a 20%
slowdown, while in mg-C+cg-B we observe ≈ 70% improve-
ment for mg-C and a 20% slowdown for cg-B. A cg-B+cg-
B UPC experiment on Barcelona observes a 10% slowdown
when sharing cores, while in the mg-C+cg-B experiment mg-
C observes a 90% speedup and cg-B observes a 30% speedup.
Overall, when each application is executed with one thread per
core, sharing the system shows a 33% and 23% improvement
for the UPC and OpenMP workloads respectively.

Oversubscription increases the benefits of sharing the sys-
tem for the CMP architectures: the UPC improvements are
38% and 45%, while the OpenMP improvements are 46%
and 28% when running with two and four threads per core
respectively. The best overall throughout is obtained when
sharing the system and allowing each application to run with
multiple (2,4) threads per core. The results on the Nehalem
SMT architecture are presented in Figure 13. On this SMT
architecture, sharing the system provides throughput identical
to the partitioned runs.

Figure 12 provides details about the impact of sharing the
Barcelona system. For each benchmark, the figure plots the
fraction of its performance when compared to the dedicated
run with one thread per core. When sharing we expect each
benchmark to run close to 50% of its original speed. Any
fraction larger than 50% indicates a potential for increased
throughput. These results also give an indication of application
symbiosis. For example, in the ep-C+ep-C combination each
instance runs at 50% of the original speed. The cg-B+ep-C
contains a memory intensive benchmark and a CPU intensive
benchmark: cg-B runs at 60% of its original speed, while ep-C
runs at 90% of its original speed. For combinations of memory
intensive (mg-C+cg-B) applications, mg-C runs at 85% of its
original speed, while cg-B runs at 45%. Figure 14 shows
the behavior on Nehalem where we observe a 7% overall
throughput improvement.

The UPC programs respond better to oversubscription
than OpenMP and therefore respond better to sharing the
system. The overall throughput of the UPC+UPC workload
is improved by 20% and 27% when applications are exe-
cuted with one and two threads per core respectively. The
OpenMP+OpenMP workload throughput is improved by 9%
and 24% respectively. These improvements are relative to the
performance observed when applications are run on a dedi-
cated system with one thread per core. For reference, Figure 15
shows the throughput improvements when the system is shared
between MPI and OpenMP implementations. We plot the
speedup of an application combination when sharing compared
to executing each application in sequence: max(T (A), T (B))
at the given concurrency compared with T (A) + T (B) when
executed with one thread per core. Any combination of pro-
gramming models exhibits similar trends on all architectures.
Figures 16 and 17 show the behavior of a UPC+OpenMP
workload for different settings of KMP BLOCKTIME. All results
indicate that best throughput is obtained when sharing with
each application running with multiple threads per core.

Figures 11 and 12 present results for experiments (PIN)

where thread affinity is explicitly managed. With the default
Linux load balancing, results are very noisy and throughput
is lowered when sharing cores. In particular, when using the
default Linux load balancing the total execution time in a
shared environment is greater than the time of executing the
benchmarks in sequence. Runs with explicitly pinned threads
not only outperform the runs with the default Linux load
balancing, but also exhibit very low performance variability,
less than 10%, compared to the high variability of the later,
which is up to 100%. For any given benchmark combination,
sharing or partitioning, the performance variability of the total
duration of the run (A‖B) is small, usually less than 10%.
Partitioning provides performance reproducibility: for every
benchmark pair, the performance variation of any benchmark
in the pair is less than 10%, irrespective of co-runners. When
sharing the system, the variability of each benchmark across
individual runs is higher, up to 81% across all combinations.

There is a direct correlation between the oversubscription
trends presented in Section V for a dedicated environment
and application symbiosis when sharing the system. The
applications with coarse grained synchronization share the
system very well, while the applications with fine grained
synchronization might observe performance degradation. For
any given pair of benchmarks, if one benchmark in the pair
is not affected by oversubscription, the overall throughput
improves irrespective of its co-runner behavior and the number
of threads per core in each application: there is a direct
correlation between behavior with oversubscription and be-
havior when sharing. This also indicates that synchronization
granularity is perhaps the most important symbiosis metric and
it suggests that oversubscription could potentially diminish any
advantages of symbiotic scheduling of parallel applications.
Increasing the number of threads per core in each application
improves overall throughput. Intuitively, oversubscription in-
creases diversity in the system and decreases the potential for
resource conflicts.

Oversubscription also changes the relative ordering of the
performance of implementations. In a dedicated environment,
the NAS OpenMP implementations have a performance advan-
tage over the UPC and MPI implementations (≈ 10%−30%).
Sharing reverses the relative performance trends observed
in dedicated environments, and the shared UPC workloads
provide the shortest time to solution (≈ 10% faster).

A. Imbalanced Sharing

The per-core scheduling mechanism (Completely Fair
Scheduler) in Linux attempts to provide a fair repartition of ex-
ecution time to the tasks sharing the core and oversubscription
might provide a mechanism to proportionally allocate system
resources to applications.

Figures 18 and 19 present results for sharing the system
when one application is given preference and it is allowed to
run with a larger number of threads. Figure 18 presents the
impact on the application that receives the smaller number of
threads, while Figure 19 presents the impact on the application
with the larger number of threads. Both figures present the per-
formance normalized to the performance observed when both



applications run concurrently with one thread per core. CG
performance degrades with oversubscription in dedicated en-
vironments and, for these experiments, allocating more threads
to CG than to co-runners does not improve its performance.
EP is compute bound and allocating more threads determines
a throughput increase proportional to the thread ratio with
respect to co-runners. FT which benefits from oversubscription
observes good throughput increases when given preference;
MG also observes throughput increases, albeit smaller.

The results show a strong correlation between the appli-
cation behavior with oversubscription in dedicated environ-
ments and the observed results in these scenarios. Overall,
the performance of the applications that receive the smaller
number of threads does not degrade and for the considered
benchmarks we observe little (1% and -7% when receiving
33% and 20% per core share respectively) throughput changes
when compared to balanced sharing. The performance of
applications that receive a larger number of threads improves
and we observe an overall improvement in throughput. The
improvement in throughput is correlated to the task share
received by the application, e.g. we observe 10% overall
throughput improvement for two threads and 8% for four
threads. These results are heavily skewed by the behavior
of CG. Without CG, the improvements are 12% and 20%
respectively. Our experiments indicate that imbalanced sharing
should not be considered for OpenMP. We plan to examine in
future work the impact of gang scheduling on the OpenMP
performance in this scenario.

These trends indicate that, besides priorities and partition-
ing, controlling the number of threads an application receives
is worth exploring as a way of controlling its system share. The
magnitude of the performance differences indicates that for
modest sharing (two, three applications) and modest oversub-
scription (two, four eight threads) gang scheduling techniques
might not provide large additional performance improvements
for the SPMD programming models (UPC and MPI) evaluated.

VII. DISCUSSION

All implementations examined in this study have even per-
task domain decompositions and are well balanced. We expect
the benefits of oversubscription to be even more pronounced
for load imbalanced irregular applications.

There are several implications from our evaluation of shar-
ing and partitioning. Partitioning gives each application a share
of dedicated resources at the expense of lower parallelism.
Sharing time-slices resources across applications. Performance
is determined by a combination of load balancing, degree
of parallelism and contention with respect to resource usage:
CPU, caches and memory bandwidth. The fact that partitioning
produces lower performance than sharing indicates that for our
workloads parallelism and load balance concerns still trump
contention concerns.

We examine reference implementations compiled with com-
mercially available compilers. Better optimizations or applying
autotuning techniques to these applications might produce
code (better cache locality, increased memory bandwidth re-
quirements) that requires contention awareness and system

partitioning. However, current autotuning techniques improve
short term locality and reuse; the granularity of the OS time
quantum is likely to remain larger than the duration of the
computation blocks affected by autotuning. We believe that
better code generation techniques will not affect the trends
reported in this study for the current system sizes: parallelism
and load balancing concerns will continue to be the deter-
mining performance factors. Determining the core count at
which contention and scheduling interactions require careful
partitioning is an open research question.

While we clearly advocate running in competitive environ-
ments and sharing cores for improved throughput, the question
of the proper environment for code tuning remains open. The
results with system partitioning indicate a good performance
isolation between competing applications and seems to be the
preferred alternative.

We believe that further performance improvements can be
achieved for the fine grained applications by re-examining the
implementations of the collective and barrier synchronization
operations. The current implementations are heavily optimized
for execution with one thread per core in dedicated environ-
ments. In [17] we present kernel level extensions for coop-
erative scheduling on the CellBE in the presence of oversub-
scription. In that particular environment, oversubscription was
required for good performance and we have extended Linux
with a new system call sched_yield_to. Similar support
and a re-thinking of the barrier implementations might be able
to improve the performance of oversubscribed fine grained
applications. As future work we also plan to examine the
interaction between oversubscription and networking behavior
on large scale clusters.

The reversal of performance trends between UPC and
OpenMP in the presence of competition and oversubscription,
indicates that these factors might be valuable when evaluating
parallel programming models in desktop and shared servers
competitive environments.

VIII. RELATED WORK

Charm [18] and AMPI [19] are research projects that advo-
cate oversubscription as an efficient way of hiding communi-
cation latency and improving application level load balancing
for MPI programs running on clusters. They use thread virtu-
alization and provide a runtime scheduler to multiplex tasks
waiting for communication. Cilk and X10 provide work steal-
ing runtimes for load balancing. All these approaches provide
their implementation specific load balancing mechanism and
assume execution in dedicated environments with one “meta-
thread” per core. The behavior of these models in competitive
environments has not been well studied. We believe that
oversubscription can provide an orthogonal mechanism to
increase performance robustness in competitive environments.

Oversubscription for OpenMP programs is discussed by
Curtis-Maury [20] et al for SMT and CMP (simulated) pro-
cessors. For the NAS benchmarks they report a much higher
impact of oversubscription than the impact we observe in this
study on existing architectures and mostly advocate against it.
For SMT, they also indicate that symbiosis with the hardware



context co-runner is very important. Our results using a similar
workload on Nehalem processors indicate that the determining
performance factor is the granularity of the synchronization
operations. The differences in reported trends might be caused
by the fact that we evaluate systems with a larger number
of cores. Liao et al [16] discuss OpenMP performance on
CMP and SMT architectures running in dedicated mode and
consider both static and dynamic schedules: their results
indicate little variation between different schedules.

A large body of research in multiprocessor scheduling
can be loosely classified as symbiotic scheduling: threads
are scheduled according to resource usage patterns. Surpris-
ingly, there is little information available about the impact of
sharing or partitioning multicore processors for fully parallel
workloads. Most available studies consider either symbiotic
scheduling of parallel workloads on clusters (e.g. [21] com-
putation + I/O) or symbiotic scheduling of multiprogrammed
workloads on multicore systems. Snavely and Tullsen [22]
introduce symbiotic co-scheduling on SMT processors for a
workload heavily biased towards multiprogrammed single-
threaded jobs. Their approach samples different possible
schedules and assigns threads to SMT hardware contexts. Fe-
dorova et al [23] present an OS scheduler able to improve the
cache symbiosis of multiprogrammed workloads. Our results
indicate that for parallel scientific workloads in competitive
environments oversubscription is a robust way to increase
symbiosis without any specialized support.

Boneti et al [24] present a scheduler for balancing high
performance computing MPI applications on the POWER5
processor. Their implementation targets SMT processors and
uses hardware support to manipulate instruction priorities
within one core. Li et al [11] present an implementation
of Linux load balancing for performance asymmetric multi-
core architectures and discuss performance under parallel and
server workloads. They modify the Linux load balance to use
the notions of scaled core speed and scaled load but balancing
is performed based on run queue length.

Job scheduling for parallel systems has an active research
community. Feitelson [25] maintains the Parallel Workload
Archive that contains standardized job traces from many large
scale installations. Feitelson and Rudolph [26] provide an
insightful discussion about the impact of gang scheduling
on the performance of fine grained applications. Their study
was conducted in 1992 on the Makbilan processor. Zhang
et al [27] provide a comparison of existing techniques and
discuss migration based gang scheduling for large scale sys-
tems. Gang scheduling is increasingly mentioned in multicore
research studies, e.g. [6], but without a practical, working
implementation. Gang scheduling has been also shown to
reduce OS jitter on large scale systems. The new operating
systems for the IBM BG/Q and Cray XT6 systems have been
announced to support dedicated OS service cores in an attempt
to minimize jitter at very large scale. Our results provide
encouraging evidence that oversubscription might provide an
alternate way for reducing the impact of OS jitter on the
performance of scientific applications and alleviating some of
the need for gang scheduling.

IX. CONCLUSION

In this paper we evaluate the impact of executing MPI, UPC
and OpenMP applications with task oversubscription. We use
implementations of the NAS Parallel Benchmarks on multi-
socket multicore systems using both UMA and NUMA mem-
ory systems. In addition to the default Linux load balancing
we evaluate the impact of explicit thread affinity management.
We also evaluate the impact of sharing or partitioning the cores
within a system on the throughput of parallel workloads.

Our results indicate that oversubscription with proper sup-
port should be given real consideration when running parallel
applications. For competitive environments, oversubscription
decreases the impact of co-runners and the performance vari-
ability. In these environments, oversubscription also improves
system throughput by up to 27%. For the CMP systems
evaluated, partitioning in competitive environments reduces
throughput by up to 46%. On the Nehalem SMT architecture
partitioning the cores between applications results in almost
identical throughput to shared usage. On all architectures
evaluated, best throughput is obtained when applications share
all the cores and are executed with multiple threads per
core. The granularity of the synchronization present in an
application in a dedicated environment is perhaps the best
measure of its degree of symbiosis with other applications.



REFERENCES

[1] G. Krawezik, “Performance Comparison of MPI And Three OpenMP
Programming Styles On Shared Memory Multiprocessors,” in SPAA
’03: Proceedings Of The Fifteenth Annual ACM Symposium On Parallel
Algorithms And Architectures, 2003.

[2] F. Cappello and D. Etiemble, “MPI Versus MPI+OpenMP on IBM SP
for the NAS Benchmarks,” in Supercomputing ’00: Proceedings of the
2000 ACM/IEEE Conference on Supercomputing, 2000.

[3] P. Balaji, R. Thakur, E. Lusk, and J. Dinan, “Hybrid Parallel Program-
ming with MPI and PGAS (UPC),” Available at http://meetings.mpi-
forum.org/secretary/2009/07/slides/2009-07-27-mpi-upc.pdf, 2009.

[4] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams,
and K. A. Yelick, “The Landscape of Parallel Computing Research:
A View from Berkeley,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2006-183, Dec 2006. [Online]. Avail-
able: http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-
183.html

[5] “The NAS Parallel Benchmarks,” Available at
http://www.nas.nasa.gov/Software/NPB.

[6] R. Liu, K. Klues, S. Bird, S. Hofmeyr, K. Asanovic, and J. Kubiatow-
icz, “Tessellation: Space-Time Partitioning in a Manycore Client OS,”
Proceedings of the First Usenix Workshop on Hot Topics in Parallelism,
2009.

[7] K. J. Nesbit, M. Moreto, F. J. Cazorla, A. Ramirez, M. Valero, and J. E.
Smith, “Multicore Resource Management,” IEEE Micro, vol. 28, no. 3,
2008.

[8] L. Xue, O. Ozturk, F. Li, M. Kandemir, and I. Kolcu, “Dynamic
Partitioning Of Processing And Memory Resources In Embedded Mpsoc
Architectures,” in DATE ’06: Proceedings of the conference on Design,
automation and test in Europe. 3001 Leuven, Belgium, Belgium:
European Design and Automation Association, 2006, pp. 690–695.

[9] T. Li, D. Baumberger, and S. Hahn, “Efficient And Scalable Multipro-
cessor Fair Scheduling Using Distributed Weighted Round-Robin,” in
PPoPP ’09: Proceedings of the 14th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming. New York, NY,
USA: ACM, 2009, pp. 65–74.

[10] A. Mandal, A. Porterfield, R. J. Fowler, and M. Y.
Lim, “Performance Consistency on Multi-Socket AMD Opteron
Systems.” RENCI, Tech. Rep. TR-08-07, 2008. [Online]. Available:
http://www.renci.org/publications/techreports/TR-08-07.pdf

[11] T. Li, D. Baumberger, D. A. Koufaty, and S. Hahn, “Efficient Operating
System Scheduling for Performance-Asymmetric Multi-Core Architec-
tures,” in SC ’07: Proceedings of the 2007 ACM/IEEE conference on
Supercomputing, 2007.

[12] S. Hofmeyr, C. Iancu, and F. Blagojevic, “Load Balancing on Speed,”
To appear in Proceedings of Principles and Practice of Parallel Pro-
gramming (PPoPP’10), 2010.

[13] S. B. Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek, R. Morris,
A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang, and Z. Zhang, “Corey:
An Operating System for Many Cores,” in Proceedings of the 8th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI ’08), 2008.

[14] “UPC Language Specification, Version 1.0,” Available at
http://upc.gwu.edu.

[15] “The GWU NAS Benchmarks,” Available at http://upc.gwu.edu/ down-
load.html.

[16] C. Liao, Z. Liu, L. Huang, and B. Chapman, Evaluating OpenMP on
Chip MultiThreading Platforms, ser. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2008.

[17] F. Blagojevic, C. Iancu, K. Yelick, M. Curtis-Maury, D. S. Nikolopoulos,
and B. Rose, “Scheduling Dynamic Parallelism On Accelerators,” in CF
’09: Proceedings of the 6th ACM conference on Computing Frontiers,
2009.

[18] “CHARM++ project web page,” Available at http://charm.cs.uiuc.edu.
[19] C. Huang, O. Lawlor, and L. V. Kal, “Adaptive MPI,” in In Proceedings

of the 16th International Workshop on Languages and Compilers for
Parallel Computing (LCPC 03, 2003, pp. 306–322.

[20] M. Curtis-Maury, X. Ding, C. Antonopoulos, and D. Nikolopou-
los, “An Evaluation of OpenMP on Current and Emerging Multi-
threaded/Multicore Processors,” in Proceedings of the 1st International
Workshop on OpenMP (IWOMP’05).

[21] J. Weinberg and A. Snavely, “User-Guided Symbiotic Space-Sharing
Of Real Workloads,” in ICS ’06: Proceedings of the 20th Annual
International Conference on Supercomputing, 2006.

[22] A. Snavely, “Symbiotic Jobscheduling For A Simultaneous Multithread-
ing Processor,” in In Eighth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2000, pp. 234–244.

[23] A. Fedorova, M. I. Seltzer, and M. D. Smith, “Improving Performance
Isolation on Chip Multiprocessors via an Operating System Scheduler,”
in Proceedings of Parallel Architectures and Compilation Techniques
(PACT), 2007.

[24] C. Boneti, R. Gioiosa, F. J. Cazorla, and M. Valero, “A Dynamic
Scheduler for Balancing HPC Applications,” in SC ’08: Proceedings
of the 2008 ACM/IEEE conference on Supercomputing, 2008.

[25] “Parallel Workload Archive,” Available at http://
www.cs.huji.ac.il/labs/parallel/workload/.

[26] D. G. Feitelson and L. Rudolph, “Gang Scheduling Performance Benefits
for Fine-Grain Synchronization,” Journal of Parallel and Distributed
Computing, vol. 16, pp. 306–318, 1992.

[27] Y. Zhang, H. Franke, J. Moreira, and A. Sivasubramaniam, “An Inte-
grated Approach to Parallel Scheduling Using Gang-Scheduling, Back-
filling and Migration,” in IEEE Transactions on Parallel and Distributed
Systems (TPDS), 2003.


